|
1: |
|
from(X) |
→ cons(X,n__from(s(X))) |
2: |
|
2ndspos(0,Z) |
→ rnil |
3: |
|
2ndspos(s(N),cons(X,Z)) |
→ 2ndspos(s(N),cons2(X,activate(Z))) |
4: |
|
2ndspos(s(N),cons2(X,cons(Y,Z))) |
→ rcons(posrecip(Y),2ndsneg(N,activate(Z))) |
5: |
|
2ndsneg(0,Z) |
→ rnil |
6: |
|
2ndsneg(s(N),cons(X,Z)) |
→ 2ndsneg(s(N),cons2(X,activate(Z))) |
7: |
|
2ndsneg(s(N),cons2(X,cons(Y,Z))) |
→ rcons(negrecip(Y),2ndspos(N,activate(Z))) |
8: |
|
pi(X) |
→ 2ndspos(X,from(0)) |
9: |
|
plus(0,Y) |
→ Y |
10: |
|
plus(s(X),Y) |
→ s(plus(X,Y)) |
11: |
|
times(0,Y) |
→ 0 |
12: |
|
times(s(X),Y) |
→ plus(Y,times(X,Y)) |
13: |
|
square(X) |
→ times(X,X) |
14: |
|
from(X) |
→ n__from(X) |
15: |
|
activate(n__from(X)) |
→ from(X) |
16: |
|
activate(X) |
→ X |
|
There are 15 dependency pairs:
|
17: |
|
2ndspos#(s(N),cons(X,Z)) |
→ 2ndspos#(s(N),cons2(X,activate(Z))) |
18: |
|
2ndspos#(s(N),cons(X,Z)) |
→ ACTIVATE(Z) |
19: |
|
2ndspos#(s(N),cons2(X,cons(Y,Z))) |
→ 2ndsneg#(N,activate(Z)) |
20: |
|
2ndspos#(s(N),cons2(X,cons(Y,Z))) |
→ ACTIVATE(Z) |
21: |
|
2ndsneg#(s(N),cons(X,Z)) |
→ 2ndsneg#(s(N),cons2(X,activate(Z))) |
22: |
|
2ndsneg#(s(N),cons(X,Z)) |
→ ACTIVATE(Z) |
23: |
|
2ndsneg#(s(N),cons2(X,cons(Y,Z))) |
→ 2ndspos#(N,activate(Z)) |
24: |
|
2ndsneg#(s(N),cons2(X,cons(Y,Z))) |
→ ACTIVATE(Z) |
25: |
|
PI(X) |
→ 2ndspos#(X,from(0)) |
26: |
|
PI(X) |
→ FROM(0) |
27: |
|
PLUS(s(X),Y) |
→ PLUS(X,Y) |
28: |
|
TIMES(s(X),Y) |
→ PLUS(Y,times(X,Y)) |
29: |
|
TIMES(s(X),Y) |
→ TIMES(X,Y) |
30: |
|
SQUARE(X) |
→ TIMES(X,X) |
31: |
|
ACTIVATE(n__from(X)) |
→ FROM(X) |
|
The approximated dependency graph contains 3 SCCs:
{27},
{29}
and {17,19,21,23}.